Enthalpy and Entropy

Methanol, CH3OH, can be made industrially by the reaction of carbon monoxide with hydrogen, 1. as shown in equilibrium 1.

 $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ $\Delta H = -91 \text{ kJ mol}^{-1}$

Equilibrium 1

Standard entropy values are given below.

Substance	CO(g)	H ₂ (g)	CH₃OH(g)
S ⁶ / J K ⁻¹ mol ⁻¹	198	131	238

A chemist proposed producing methanol at 525 K using equilibrium 1 .		
Explain, with a calculation, whether the production of methanol is feasible at 525 K.		
[5		

2. The standard enthalpy change of reaction, $\Delta_r H^{\circ}$, and the standard free energy change, ΔG° , for converting anhydrous sodium thiosulfate to hydrated sodium thiosulfate are shown below.

 $Na_2S_2O_3(s) + 5H_2O(l) \rightarrow Na_2S_2O_3 \cdot 5H_2O(s)$

 $\Delta_r H^{o-} = -55.8 \text{ kJ mol}^{-1}$

 $\Delta G^{\circ} = -16.1 \text{ kJ mol}^{-1}$

Standard entropies are given in the table.

Compound	S ^a / J K ⁻¹ mol ⁻¹
Na ₂ S ₂ O ₃ •5H ₂ O(s)	372.4
H ₂ O(I)	69.9

3.

Determine the standard entropy, S^{ω} , of anh	ydrous sodium thiosulfate, Na ₂ S ₂ O ₃ (s).
Give your answer to 3 significant figures.	
	S° J K ⁻¹ mol ⁻¹ [4]
Two changes are described below.	
For each change,	
 write an equation, including state symbol 	ols.
state and explain how the entropy change	
i. The reaction of aqueous barium niti	rate with aqueous sodium sulfate.
Full equation with state symbols	
,	
Explanation of entropy	
change	
	101
	[2]

ii.	The change that accompanies the standard enthalpy change of atomisation of iodine.		
	Equation with state symbols		
	Explanation of entropy change		
		[2]	
 		[2]	

4(a). This question is about free energy changes, ΔG , enthalpy changes, ΔH , and temperature, T. The Gibbs' equation is shown below.

$$\Delta G = \Delta H - T \Delta S$$

A chemist investigates a reaction to determine how ΔG varies with T. The results are shown in **Fig. 18.1**.

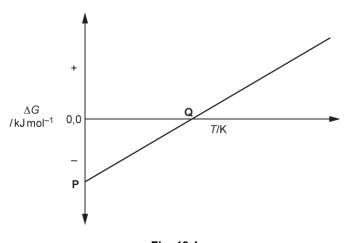


Fig. 18.1

Explain your reasoning.

		[4]
equilib	Fe ₃ O ₄ (s) + 4C(s) \rightleftharpoons 3Fe(s) + ΔH = +676.4 kJ mol ⁻¹ 4CO(g) ΔS = +703.1 J K ⁻¹ mol ⁻¹	
i.	Why is equilibrium 18.1 a <i>heterogeneous</i> equilibrium?	
		[1]
ii.	Write the expression for K_p for equilibrium 18.1 .	
		[1]
iii.	 The forward reaction in equilibrium 18.1 is only feasible at high temperatures. Show that the forward reaction is not feasible at 25 °C. Calculate the minimum temperature, in K, for the forward reaction to be feasible. 	
	minimum temperature =	K [3]
	lron ca Severa equilib i.	Iron can be extracted from its ore Fe ₃ O ₄ using carbon. Several equilibria are involved including equilibrium 18.1 , shown below.

iv. Another equilibrium involved in the extraction of iron from Fe_3O_4 is shown below.

$$Fe_3O_4(s) + 4CO(g) \rightleftharpoons 3Fe(s) + 4CO_2(g)$$
 $\Delta H = -13.5 \text{ kJ mol}^{-1}$

Enthalpy changes of formation, $\Delta_f H$, for Fe₃O₄(s) and CO₂(g) are shown in the table.

Compound	∆ _f <i>H</i> / kJ mol ⁻¹
Fe ₃ O ₄ (s)	-1118.5
CO ₂ (g)	-393.5

Calculate the enthalpy change of formation, $\Delta_f H$, for CO(g).

$$\Delta_f H$$
, for CO(g) =
 kJ mol⁻¹
 [3]

 $\textbf{5(a).} \qquad \text{Much of the sulfur required for production of sulfuric acid is obtained from sulfur impurities in natural gas, such as hydrogen sulfide, <math>H_2S$.}

The H₂S is converted into sulfur in two steps.

Step 1: Some of the H_2S is reacted with oxygen to form sulfur dioxide, SO_2 . $2H_2S(g) + 3O_2(g) \rightarrow 2SO_2(g) + 2H_2O(g)$

Step 2: The remaining H_2S is reacted with the SO_2 to produce sulfur. $2H_2S(g)+SO_2(g)\to 3S(s)+2H_2O(g)$

i. Construct the overall equation for the two steps above.

[1]

ii.	A natural gas supply contains 16.0% H ₂ S by volume.
	The $H_2S(g)$ in 1.50 × 10 ⁸ dm ³ of this natural gas supply, measured at RTP, is processed
	into sulfur with an overall percentage yield of 95.0%.

Calculate the mass of sulfur, in g, obtained from 1.50×10^8 dm³ of natural gas supply.

Give your answer to **three** significant figures and in standard form.

(b). The enthalpy change for the equation in **step 2** is shown below.

$$2H_2S(g) + SO_2(g) \rightarrow 3S(s) + 2H_2O(g)$$
 $\Delta H = -145.6 \text{ kJ mol}^{-1}$

Standard entropies, S, and enthalpy changes of formation, $\Delta_f H$, are given in the table.

Substance	H ₂ S(g)	SO ₂ (g)	S(s)	H ₂ O(g)
S / J mol ⁻¹ K ⁻¹	205.7	248.1	31.8	188.7
Δ _f H / kJ mol ⁻¹	-20.6		0	-241.8

i. Calculate ΔG at 25 °C, and explain whether the reaction in **step 2** is feasible at 25 °C.

Calculate the temperature, in K, at which the feasibility changes.

Show your working and explain your reasoning.

[5]

ii. Calculate $\Delta_f H$ for $SO_2(g)$.

$$\Delta_f H \text{ for SO}_2(g) = \dots kJ \text{ mol}^{-1}$$
 [2]

6(a). This question is about four enthalpy changes, A-D, that can be linked to the dissolving of potassium sulfate, K_2SO_4 , in water.

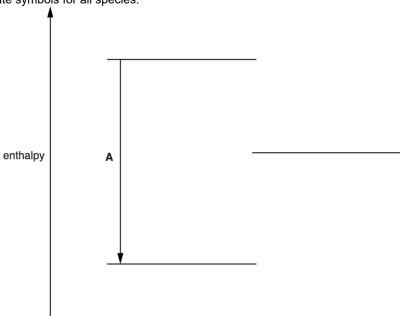

	Name of enthalpy change	Enthalpy change / kJ mol ⁻¹
Α	lattice enthalpy of potassium sulfate	-1763
В	enthalpy change of solution of potassium sulfate	+24
С	enthalpy change of hydration of potassium ions	-320
D	enthalpy change of hydration of sulfate ions	

Table 3.1

	[2]
Define the term <i>enthalpy change of hydration</i> .	

(b). The diagram below is an incomplete energy cycle linking the four enthalpy changes in **Table 3.1**. One of the four energy levels is missing.

Include state symbols for all species.

	I.	 Complete the energy cycle as follows. Add the missing energy level to the diagram. Add the species on all four energy levels.
		 Add arrows to show the direction of the three missing enthalpy changes. Label these enthalpy changes using the letters B–D from Table 3.1.
		[5]
	ii.	Calculate the enthalpy change of hydration of sulfate ions.
		$\Delta H =$ kJ mol ⁻¹ [1]
(c).	The en	tropy change of solution of K₂SO₄ is +225 J K⁻¹ mol⁻¹.
	i.	Suggest, in terms of the states of the particles involved, why this entropy change is positive.
	ii.	Explain, using a calculation, why K_2SO_4 dissolves in water at 25 °C, despite the enthalpy change of solution being endothermic.
		[3]

7.

This qu	uestion looks at two reactions invo	olving sulfur compounds.		
Hydrog	en reacts with carbon disulfide a	s shown below.		
	$4H_2(g) + 0$	$CS_2(g) \rightarrow CH_4(g) + 2H_2S$	(g)	
or this	s reaction, $\Delta H = -234 \text{ kJ mol}^{-1}$ and	od $\Delta S = -164 \text{ J K}^{-1} \text{ mol}^{-1}$		
i.	Why does the reaction have a r			
 				r
Ш.	Standard entropies are shown i	n the table below.		
	substance	CS ₂ (g)	CH ₄ (g)	H₂S(g)
	S ^e / JK ⁻¹ mol ⁻¹	238	186	206
iii.	Explain, with a calculation, whe Show your working.	ther this reaction is feasi	ble at 25°C.	
				[i
iv.	Explain, with a calculation, the reaction.	significance of temperatu	res above 1154°C	for this
				[2

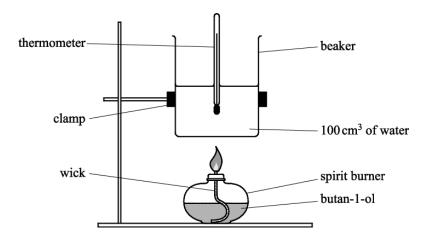
8(a) This question	looks at different	aspects of entropy.
--------------------	--------------------	---------------------

Three processes are given below.

For each process, state and explain whether the change would be accompanied by an increase or decrease in entropy.

i.	The freezing of water.	
	increase or decrease	
	explanation	
		[1]
ii.	The reaction of calcium carbonate with hydrochloric acid.	
	increase or decrease	
	explanation	
		[1]
		1.1
iii.	The formation of $O_3(g)$ from $O_2(g)$.	
	increase or decrease	
	explanation	

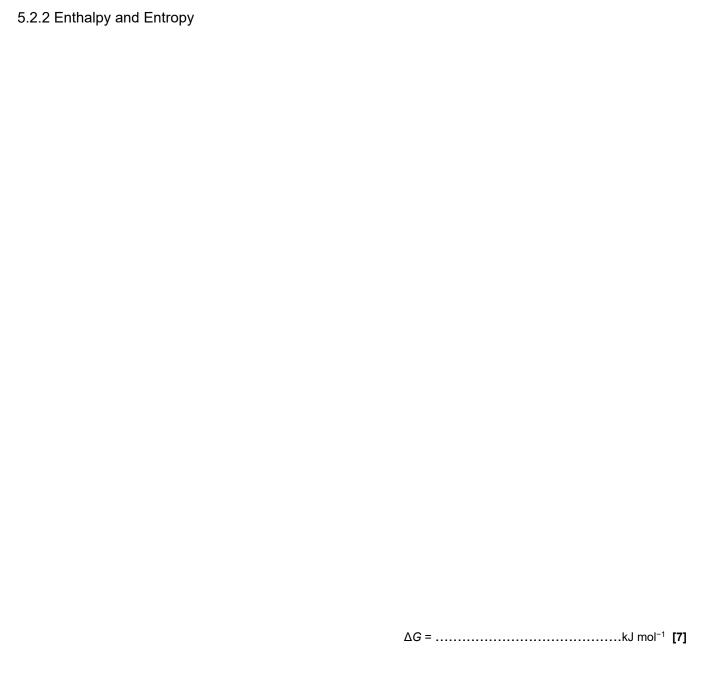
Discuss how the feasibility of this reaction will change as the temperature increases.						
	etal tungsten is obtained on a l		m its main ore,	wolframite.		
	mite contains tungsten(VI) oxid					
Tungs	ten is extracted from wolframite	by reduction	with hydrogen	:		
	$WO_3(s) + 3H_2(g) -$	→ W(s) + 3H ₂ 0	$\Delta H = \Delta H$	= +115 kJ mol	-1	
Standard entropies are given in the table below.						
Standa	ard entropies are given in the ta	ble below.				
Standa	ard entropies are given in the ta	ble below.				
Standa Subst		WO ₃ (s)	H ₂ (g)	W(s)	H ₂ O(g)	
Subst			H ₂ (g)	W(s)	H ₂ O(g)	
Subst	ance	WO ₃ (s)				
Subst	ance	WO ₃ (s)	131	33	189	
Subst S ^e / J	ance K ⁻¹ mol ⁻¹	WO ₃ (s)	131	33	189	
Subst S ^e / J	ance K ⁻¹ mol ⁻¹ Calculate the free energy cha	WO ₃ (s)	131	33	189	
Subst S ^e / J	ance K ⁻¹ mol ⁻¹ Calculate the free energy cha	WO ₃ (s)	131	33	189	
Subst S ^e / J	ance K ⁻¹ mol ⁻¹ Calculate the free energy changes show your working.	WO ₃ (s) 76 ange, Δ <i>G</i> , in k	131	33 s reaction at	189 25 °C.	
Subst S ^o / J i.	ance K^{-1} mol ⁻¹ Calculate the free energy characteristics Show your working. ΔG at 25 °C =	WO ₃ (s) 76 ange, Δ <i>G</i> , in k	131	33 s reaction at	189 25 °C.	
Subst S ^e / J	ance K^{-1} mol ⁻¹ Calculate the free energy characteristics Show your working. ΔG at 25 °C =	WO ₃ (s) 76 ange, Δ <i>G</i> , in k	131	33 s reaction at	189 25 °C.	
Subst S ^o / J i.	ance K^{-1} mol ⁻¹ Calculate the free energy characteristics Show your working. ΔG at 25 °C =	WO ₃ (s) 76 ange, Δ <i>G</i> , in k	131	33 s reaction at	189 25 °C.	
Subst S ^o / J i.	ance K^{-1} mol ⁻¹ Calculate the free energy characteristics Show your working. ΔG at 25 °C =	WO ₃ (s) 76 ange, Δ <i>G</i> , in k	131	33 s reaction at	189 25 °C.	
Subst S ^o / J i.	ance K^{-1} mol ⁻¹ Calculate the free energy characteristics Show your working. ΔG at 25 °C =	WO ₃ (s) 76 ange, Δ <i>G</i> , in k	131	33 s reaction at	189 25 °C.	
Subst S ^o / J i.	ance K^{-1} mol ⁻¹ Calculate the free energy characteristics Show your working. ΔG at 25 °C =	WO ₃ (s) 76 ange, Δ <i>G</i> , in k	131 *J mol ⁻¹ , for thi at which this re	33 s reaction at	189 25 °C. kJ mo	


- **9.** A student is asked to calculate ΔG at 25 °C for the combustion of butan-1-ol. The teacher provides two pieces of information.
 - The equation for the combustion of butan-1-ol.

$$CH_3(CH_2)_3OH(I) + 6O_2(g) \rightarrow 4CO_2(g) + 5H_2O(I)$$
 Equation 2

• Standard entropies of butan-1-ol, oxygen, carbon dioxide and water.

	CH ₃ (CH ₂) ₃ OH(I)	O ₂ (g)	CO ₂ (g)	H ₂ O(I)
S⊕ / J K ⁻¹ mol ⁻¹	228	205	214	70


The student carries out an experiment using the apparatus below and obtains the following results. The specific heat capacity of water is $4.18 \text{ J g}^{-1} \text{ K}^{-1}$.

Mass of burner and butan-1-ol before burning / g	98.997
Mass of burner and butan-1-ol after burning / g	98.738
Initial temperature / °C	18.5
Maximum temperature reached / °C	39.0

Use the information on the previous page to calculate ΔG , in kJ mol⁻¹, for the combustion of butan-1-ol according to **Equation 2** at 25 °C.

Show all your working.

END OF QUESTION PAPER